Distributing Python Modules
Release 2.6.2

Guido van Rossum

Fred L. Drake, Jr., editor

June 14, 2009

Python Software Foundation
Email: docs@python.org

CONTENTS

An Introduction to Distutils 3
1.1 Concepts& Terminology o i i e e e e e 3
1.2 ASimple Example. L e e 3
1.3 General Pythonterminology e e 5
1.4 Distutils-specificterminology. e 5
Writing the Setup Script 7
2.1 Listingwhole packages. 8
2.2 Listingindividualmodules 8
2.3 Describing extension modules. 8
2.4 Relationships between Distributions and Packages. 12
2.5 Installing SCripts. e e e e e 12
2.6 InstallingPackage Data e 13
2.7 Installing Additional Files. e 13
2.8 Additional meta-data L e 14
2.9 Debuggingthe setupscript. e 15
Writing the Setup Configuration File 17
Creating a Source Distribution 19
4.1 Specifyingthefilestodistribute 19
4.2 Manifest-related options 21
Creating Built Distributions 23
5.1 Creating dumb built distributions. 24
5.2 CreatingRPMpackages. 24
5.3 CreatingWindows Installers. e 26
5.4 Cross-compilingon Windows e e 26
5.5 VistaUser Access Control (UAC) s e e e e 27
Registering with the Package Index 29
6.1 The.pypircfile. e e 29
Uploading Packages to the Package Index 31
Examples 33
8.1 Pure Python distribution (boy module) 33
8.2 Pure Python distribution (by package) 34
8.3 Singleextensionmodule. e 36
Extending Distutils 37
9.1 Integratingnew commands. L e e e 37
9.2 Adding new distributiontypes e 38

10 Command Reference 39

10.1 Installing modules: thiastall command family. 39
10.2 Creating a source distribution: tedistcommando 39
11 API Reference 41
11.1 distutils.core — Core Distutils functionality 41
11.2 distutils.ccompiler — CCompilerbaseclass 44
11.3 distutils.unixccompiler —UnixCCompiler 48
11.4 distutils.msvccompiler — MicrosoftCompiler. 49
11.5 distutils.bcppcompiler — Borland Compiler. 49
11.6 distutils.cygwincompiler — CygwinCompiler o 49
11.7 distutils.emxccompiler — OS/2EMX Compiler. oo 49
11.8 distutils.mwerkscompiler — Metrowerks CodeWarrior support. 49
11.9 distutils.archive_util — Archiving utilities L oL 49
11.10distutils.dep_util —Dependencychecking, 50
11.11 distutils.dir_util — Directory tree operations., 50
11.12distutils.file_util — Singlefileoperations. L. 51
11.13distutils.util — Miscellaneous other utility functions. 51
11.14distutils.dist — The Distributionclass., 53
11.15distutils.extension — The Extensionclass. 53
11.16distutils.debug — Distutilsdebugmode 53
11.17distutils.errors — Distutilsexceptions 54
11.18distutils.fancy_getopt — Wrapper around the standard getopt module 54
11.19distutils.filelist — TheFileListclass. o 55
11.20distutils.log — Simple PEP 282-stylelogging. 55
11.21distutils.spawn — Spawn asub-pProCeSS. . . . v v v v i e e e e e 55
11.22distutils.sysconfig — System configuration information 55
11.23distutils.text_file — TheTextFileclass. 56
11.24distutils.version — Versionnumberclasses. oL 57
11.25distutils.cmd — Abstract base class for Distutilscommands 57
11.26distutils.command — Individual Distutilscommands. 58
11.27 distutils.command.bdist — Buildabinaryinstaller 58
11.28distutils.command.bdist_packager — Abstract base class for packagers 58
11.29distutils.command.bdist_dumb — Build a“dumb”installer. 58
11.30distutils.command.bdist_msi — Build a Microsoft Installer binary package. 58
11.31distutils.command.bdist_rpm — Build a binary distribution as a Redhat RPM and SR
11.32distutils.command.bdist_wininst — Build a Windows installer 60
11.33distutils.command.sdist — Build a source distribution. 60
11.34distutils.command.build — Build all flesofapackage. 60
11.35distutils.command.build_clib — Build any C libraries in a package. 60
11.36distutils.command.build_ext — Build any extensionsinapackage 60
11.37distutils.command.build_py — Build the .py/.pyc filesof apackage 60
11.38distutils.command.build_scripts — Build the scripts of a package. 60
11.39distutils.command.clean — Cleanapackage buildarea 60
11.40distutils.command.config — Perform package configuration 60
11.41distutils.command.install —Installapackage. 60
11.42distutils.command.install_data — Install data files from a package 60
11.43distutils.command.install_headers — Install C/C++ header files from a package 60
11.44distutils.command.install_lib — Install library files from a package. 60
11.45distutils.command.install_scripts — Install script files from a package 60
11.46distutils.command.register — Register a module with the Python Package Index. 60
11.47 Creating anew Distutiiscommand 61
A Glossary 63
B About these documents 69
B.1 Contributors to the Python Documentation. 69

C History and License 71

D Copyright
Module Index

Index

83

85

87

Distributing Python Modules, Release 2.6.2

Authors Greg Ward, Anthony Baxter
Email distutils-sig@python.org
Release?2.6

Date June 14, 2009

This document describes the Python Distribution Utilities (“Distutils”) from the module developer’s point of view,

describing how to use the Distutils to make Python modules and extensions easily available to a wider audience
with very little overhead for build/release/install mechanics.

CONTENTS

mailto:distutils-sig@python.org

Distributing Python Modules, Release 2.6.2

2 CONTENTS

CHAPTER
ONE

AN INTRODUCTION TO DISTUTILS

This document covers using the Distutils to distribute your Python modules, concentrating on the role of devel-
oper/distributor: if you're looking for information on installing Python modules, you should refer tmhadling
Python Modulegin Installing Python Moduléschapter.

1.1 Concepts & Terminology

Using the Distutils is quite simple, both for module developers and for users/administrators installing third-party
modules. As a developer, your responsibilities (apart from writing solid, well-documented and well-tested code,
of course!) are:

 write a setup scriptsetup.py by convention)
« (optional) write a setup configuration file
* create a source distribution

« (optional) create one or more built (binary) distributions

Each of these tasks is covered in this document.

Not all module developers have access to a multitude of platforms, so it's not always feasible to expect them to
create a multitude of built distributions. It is hoped that a class of intermediaries, paltddgerswill arise to

address this need. Packagers will take source distributions released by module developers, build them on one or
more platforms, and release the resulting built distributions. Thus, users on the most popular platforms will be
able to install most popular Python module distributions in the most natural way for their platform, without having

to run a single setup script or compile a line of code.

1.2 A Simple Example

The setup script is usually quite simple, although since it's written in Python, there are no arbitrary limits to what
you can do with it, though you should be careful about putting arbitrarily expensive operations in your setup script.
Unlike, say, Autoconf-style configure scripts, the setup script may be run multiple times in the course of building
and installing your module distribution.

If all you want to do is distribute a module calléab , contained in a fildoo.py , then your setup script can be
as simple as this:

from distutils.core import setup
setup(name =’ foo ',

version ="1.0",

py_modules =[’ foo "],

)

Distributing Python Modules, Release 2.6.2

Some observations:

« most information that you supply to the Distutils is supplied as keyword arguments setin®) func-
tion

« those keyword arguments fall into two categories: package metadata (name, version number) and informa-
tion about what'’s in the package (a list of pure Python modules, in this case)

* modules are specified by module name, not flename (the same will hold true for packages and extensions)

* it's recommended that you supply a little more metadata, in particular your name, email address and a URL
for the project (see section'riting the Setup Scrifor an example)

To create a source distribution for this module, you would create a setup setigh.py , containing the above
code, and run:

python setup.py sdist

which will create an archive file (e.g., tarball on Unix, ZIP file on Windows) containing your setup script
setup.py , and your moduldoo.py . The archive file will be nametbo-1.0.tar.gz (or.zip), and
will unpack into a directoryoo-1.0

If an end-user wishes to install yofgo module, all she has to do is downlofmb-1.0.tar.gz (or.zip),
unpack it, and—from thé&o-1.0 directory—run

python setup.py install

which will ultimately copyfoo.py to the appropriate directory for third-party modules in their Python installa-
tion.

This simple example demonstrates some fundamental concepts of the Distutils. First, both developers and in-
stallers have the same basic user interface, i.e. the setup script. The difference is which BistutiBndshey

use: thesdist command is almost exclusively for module developers, wimégall is more often for installers
(although most developers will want to install their own code occasionally).

If you want to make things really easy for your users, you can create one or more built distributions for them.
For instance, if you are running on a Windows machine, and want to make things easy for other Windows users,
you can create an executable installer (the most appropriate type of built distribution for this platform) with the
bdist_wininst command. For example:

python setup.py bdist_wininst

will create an executable installépo-1.0.win32.exe , in the current directory.

Other useful built distribution formats are RPM, implemented by lidest rpm command, Solaripkgtool
(bdist_pkgtool), and HP-UXswinstall (bdist_sdux). For example, the following command will create an RPM
file calledfoo-1.0.noarch.rpm

python setup.py bdist_rpm

(Thebdist_rpm command uses thpm executable, therefore this has to be run on an RPM-based system such as
Red Hat Linux, SUSE Linux, or Mandrake Linux.)

You can find out what distribution formats are available at any time by running

python setup.py bdist --help-formats

4 Chapter 1. An Introduction to Distutils

Distributing Python Modules, Release 2.6.2

1.3 General Python terminology

If you're reading this document, you probably have a good idea of what modules, extensions, and so forth are.
Nevertheless, just to be sure that everyone is operating from a common starting point, we offer the following
glossary of common Python terms:

module the basic unit of code reusability in Python: a block of code imported by some other code. Three types
of modules concern us here: pure Python modules, extension modules, and packages.

pure Python module a module written in Python and contained in a singlg file (and possibly associated
.pyc and/or.pyo files). Sometimes referred to as a “pure module.”

extension modulea module written in the low-level language of the Python implementation: C/C++ for Python,
Java for Jython. Typically contained in a single dynamically loadable pre-compiled file, e.g. a shared object
(.so) file for Python extensions on Unix, a DLL (given thigyd extension) for Python extensions on
Windows, or a Java class file for Jython extensions. (Note that currently, the Distutils only handles C/C++
extensions for Python.)

package a module that contains other modules; typically contained in a directory in the filesystem and distin-
guished from other directories by the presence of a fil@it__.py

root package the root of the hierarchy of packages. (This isn't really a package, since it doesn’t have an
__init__.py file. But we have to call it something.) The vast majority of the standard library is in
the root package, as are many small, standalone third-party modules that don't belong to a larger module
collection. Unlike regular packages, modules in the root package can be found in many directories: in fact,
every directory listed isys.path contributes modules to the root package.

1.4 Distutils-specific terminology

The following terms apply more specifically to the domain of distributing Python modules using the Distutils:

module distribution a collection of Python modules distributed together as a single downloadable resource and
meant to be installedn masseExamples of some well-known module distributions are Numeric Python,
PyXML, PIL (the Python Imaging Library), or mxBase. (This would be callgzhekage except that term
is already taken in the Python context: a single module distribution may contain zero, one, or many Python
packages.)

pure module distribution a module distribution that contains only pure Python modules and packages. Some-
times referred to as a “pure distribution.”

non-pure module distribution a module distribution that contains at least one extension module. Sometimes
referred to as a “non-pure distribution.”

distribution root the top-level directory of your source tree (or source distribution); the directory where
setup.py exists. Generallgetup.py will be run from this directory.

1.3. General Python terminology 5

Distributing Python Modules, Release 2.6.2

6 Chapter 1. An Introduction to Distutils

CHAPTER
TWO

WRITING THE SETUP SCRIPT

The setup script is the centre of all activity in building, distributing, and installing modules using the Distutils.
The main purpose of the setup script is to describe your module distribution to the Distutils, so that the various
commands that operate on your modules do the right thing. As we saw in sécBonple Examplabove, the

setup script consists mainly of a callgetup() , and most information supplied to the Distutils by the module
developer is supplied as keyword argumentsetup()

Here’s a slightly more involved example, which we’ll follow for the next couple of sections: the Distutils’ own
setup script. (Keep in mind that although the Distutils are included with Python 1.6 and later, they also have an
independent existence so that Python 1.5.2 users can use them to install other module distributions. The Distutils’
own setup script, shown here, is used to install the package into Python 1.5.2.)

#1/usr/bin/env python
from distutils.core import setup

setup(name =’ Distutils ",
version ="1.0",
description =’ Python Distribution Utilities ",
author =" Greg Ward’ ,
author_email = gward@python.net ',
url =" http://www.python.org/sigs/distutils-sig/ ,

packages =[’ distutils , " distutils.command "1,

There are only two differences between this and the trivial one-file distribution presented in ge@iorple
Example more metadata, and the specification of pure Python modules by package, rather than by module. This
is important since the Distutils consist of a couple of dozen modules split into (so far) two packages; an explicit
list of every module would be tedious to generate and difficult to maintain. For more information on the additional
meta-data, see sectidmditional meta-data

Note that any pathnames (files or directories) supplied in the setup script should be written using the Unix con-
vention, i.e. slash-separated. The Distutils will take care of converting this platform-neutral representation into
whatever is appropriate on your current platform before actually using the pathname. This makes your setup script
portable across operating systems, which of course is one of the major goals of the Distutils. In this spirit, all
pathnames in this document are slash-separated.

This, of course, only applies to pathnames given to Distutils functions. If you, for example, use standard Python
functions such aglob.glob() or os.listdir() to specify files, you should be careful to write portable
code instead of hardcoding path separators:

glob . glob(os . path .join(" mydir ', ’"subdir ', **html ’))
os. listdir(os . path . join(" mydir ', ' subdir "))

Distributing Python Modules, Release 2.6.2

2.1 Listing whole packages

Thepackages option tells the Distutils to process (build, distribute, install, etc.) all pure Python modules found
in each package mentioned in thackages list. In order to do this, of course, there has to be a correspon-
dence between package names and directories in the filesystem. The default correspondence is the most obvious

one, i.e. packagedistutils is found in the directondistutils relative to the distribution root. Thus,
when you sayackages = [fo0’] in your setup script, you are promising that the Distutils will find a file
foo/__init__.py (which might be spelled differently on your system, but you get the idea) relative to the

directory where your setup script lives. If you break this promise, the Distutils will issue a warning but still process
the broken package anyways.

If you use a different convention to lay out your source directory, that's no problem: you just have to supply the
package_dir option to tell the Distutils about your convention. For example, say you keep all Python source
underlib , so that modules in the “root package” (i.e., not in any package at all) dike inmodules in thdoo
package are itib/ffoo , and so forth. Then you would put

package dir = {"': 'lib '}

in your setup script. The keys to this dictionary are package names, and an empty package name stands for the root
package. The values are directory names relative to your distribution root. In this case, when yacksaes
= ['foo] , you are promising that the fild/foo/__init__.py exists.

Another possible convention is to put tfe package right idib , thefoo.bar package ifib/bar | etc.
This would be written in the setup script as

package dir = {"foo’: 'lib '}

A package: dir entry in thepackage dir dictionary implicitly applies to all packages belguack-
age so thefoo.bar case is automatically handled here. In this example, hapauakages = ['foo’,
'foo.bar’] tells the Distutils to look fodib/__init__.py andlib/bar/__init__.py . (Keep in
mind that althouglpackage_dir applies recursively, you must explicitly list all packagepackages : the
Distutils will notrecursively scan your source tree looking for any directory with anit__.py file.)

2.2 Listing individual modules

For a small module distribution, you might prefer to list all modules rather than listing packages—especially the
case of a single module that goes in the “root package” (i.e., no package at all). This simplest case was shown in
sectionA Simple Exampléhere is a slightly more involved example:

py_modules = [’ modl , ’pkg.mod2]

This describes two modules, one of them in the “root” package, the other pkth@ackage. Again, the default
package/directory layout implies that these two modules can be founddd.py andpkg/mod2.py , and that
pkg/__init__.py exists as well. And again, you can override the package/directory correspondence using
thepackage _dir option.

2.3 Describing extension modules

Just as writing Python extension modules is a bit more complicated than writing pure Python modules, describing
them to the Distutils is a bit more complicated. Unlike pure modules, it's not enough just to list modules or
packages and expect the Distutils to go out and find the right files; you have to specify the extension nhame, source
file(s), and any compile/link requirements (include directories, libraries to link with, etc.).

All of this is done through another keyword argumensédup() , theext modules option.ext_modules

is just a list ofExtension instances, each of which describes a single extension module. Suppose your distri-
bution includes a single extension, caled and implemented bjoo.c . If no additional instructions to the
compiler/linker are needed, describing this extension is quite simple:

8 Chapter 2. Writing the Setup Script

Distributing Python Modules, Release 2.6.2

Extension(’'foo ', ['foo.c '])

TheExtension class can be imported frodistutils.core along withsetup() . Thus, the setup script
for a module distribution that contains only this one extension and nothing else might be:

from distutils.core import setup, Extension
setup(hame =’ foo ',

version =1.0",

ext_modules =[Extension(’'foo ', [’'foo.c '],

)

The Extension class (actually, the underlying extension-building machinery implemented blguilee ext
command) supports a great deal of flexibility in describing Python extensions, which is explained in the following
sections.

2.3.1 Extension names and packages

The first argument to thExtension constructor is always the name of the extension, including any package
names. For example,

’)

Extension(foo ', [’ src/fool.c , ' src/foo2.c])

describes an extension that lives in the root package, while

) ’

Extension(' pkg.foo ', [' src/fool.c , ' src/foo2.c '])

describes the same extension in kg package. The source files and resulting object code are identical in both
cases; the only difference is where in the filesystem (and therefore where in Python’s namespace hierarchy) the
resulting extension lives.

If you have a number of extensions all in the same package (or all under the same base package), use the
ext_package keyword argumenttsetup() . For example,

setup(...,
ext_package =" pkg’,
ext_modules =[Extension(’'foo ', ['foo.c ']),
Extension(' subpkg.bar ', [' bar.c '],

will compile foo.c to the extensiopkg.foo , andbar.c to pkg.subpkg.bar

2.3.2 Extension source files

The second argument to tiiextension constructor is a list of source files. Since the Distutils currently only
support C, C++, and Objective-C extensions, these are normally C/C++/Objective-C source files. (Be sure to use
appropriate extensions to distinguish C++source files: and.cpp seem to be recognized by both Unix and
Windows compilers.)

However, you can also include SWIG interface | files in the list; thebuild_ext command knows how to deal
with SWIG extensions: it will run SWIG on the interface file and compile the resulting C/C++ file into your
extension.

** SWIG support is rough around the edges and largely untested!

This warning notwithstanding, options to SWIG can be currently passed like this:

2.3. Describing extension modules 9

Distributing Python Modules, Release 2.6.2

setup(...,
ext_modules =[Extension(

) ’

_foo ', [’foo.i '],
swig_opts =[' -modern ', ’ -l./include "Dl
py_modules =[’ foo "],

)

Or on the commandline like this:
> python setup.py build_ext --swig-opts="-modern -I../include”

On some platforms, you can include non-source files that are processed by the compiler and included in your
extension. Currently, this just means Windows message @)(files and resource definitionr¢) files for
Visual C++. These will be compiled to binary resouraeg) files and linked into the executable.

2.3.3 Preprocessor options

Three optional arguments Extension will help if you need to specify include directories to search or prepro-
cessor macros to define/undefimeclude_dirs , define_macros , andundef_macros

For example, if your extension requires header files initisude directory under your distribution root, use
theinclude_dirs option:

Extension(' foo ', [’foo.c '], include_dirs =["include '1])

You can specify absolute directories there; if you know that your extension will only be built on Unix systems
with X11R6 installed tdusr , you can get away with

Extension('foo ', ['foo.c '], include_dirs =[* /usr/include/X11 D

You should avoid this sort of non-portable usage if you plan to distribute your code: it's probably better to write
C code like

#include <X11/Xlib.h>

If you need to include header files from some other Python extension, you can take advantage of
the fact that header files are installed in a consistent way by the Disinslsll_header command.

For example, the Numerical Python header files are installed (on a standard Unix installation) to

{usr/local/include/python1.5/Numerical . (The exact location will differ according to your plat-

form and Python installation.) Since the Python include directoysrlocal/include/pythonl.5 in

this case—is always included in the search path when building Python extensions, the best approach is to write C
code like

#include <Numerical/arrayobject.h>

If you must put theNumerical include directory right into your header search path, though, you can find that
directory using the Distutilgistutils.sysconfig module:

from distutils.sysconfig import get_python_inc
incdir = os. path . join(get_python_inc(plat_specific =1), ' Numerical ')
setup(...,

Extension(..., include_dirs =[incdir]),

)

10 Chapter 2. Writing the Setup Script

Distributing Python Modules, Release 2.6.2

Even though this is quite portable—it will work on any Python installation, regardless of platform—it’s probably
easier to just write your C code in the sensible way.

You can define and undefine pre-processor macros witlidffiae_macros andundef_macros options.
define_macros takes a list offname, value) tuples, whergmame is the name of the macro to define (a
string) andvalue is its value: either a string ddone. (Defining a macrd-OOto None is the equivalent of a
bare#define FOO in your C source: with most compilers, this sef90to the stringl.) undef_macros is
just a list of macros to undefine.

For example:

Extension(...,
define_macros =[(' NDEBUG, ' 1),
(' HAVE_STRFTIME, None)],
undef_macros =[’' HAVE_FOO, 'HAVE_BAR])

is the equivalent of having this at the top of every C source file:

#define NDEBUG 1
#define HAVE_STRFTIME
#undef HAVE_FOO
#undef HAVE_BAR

2.3.4 Library options

You can also specify the libraries to link against when building your extension, and the directories to search for
those libraries. Thibraries option is alist of libraries to link againdtbrary_dirs is a list of directories

to search for libraries at link-time, arrdntime_library_dirs is a list of directories to search for shared
(dynamically loaded) libraries at run-time.

For example, if you need to link against libraries known to be in the standard library search path on target systems

Extension(...,
libraries =[’ gdbn’ , ’readline ')

If you need to link with libraries in a non-standard location, you'll have to include the location in
library_dirs

Extension(...,
library_dirs =[’ lusr/X11R6/lib "1,
libraries =[" X111, Xt)
(Again, this sort of non-portable construct should be avoided if you intend to distribute your code.)

** Should mention clib libraries here or somewhere et3e!

2.3.5 Other options

There are still some other options which can be used to handle special cases.

Theextra_objects option is a list of object files to be passed to the linker. These files must not have exten-
sions, as the default extension for the compiler is used.

extra_compile_args andextra_link_args can be used to specify additional command line options for
the respective compiler and linker command lines.

export_symbols is only useful on Windows. It can contain a list of symbols (functions or variables) to
be exported. This option is not needed when building compiled extensions: Distutils will automatically add
initmodule to the list of exported symbols.

2.3. Describing extension modules 11

Distributing Python Modules, Release 2.6.2

2.4 Relationships between Distributions and Packages

A distribution may relate to packages in three specific ways:

1. It can require packages or modules.
2. It can provide packages or modules.

3. It can obsolete packages or modules.

These relationships can be specified using keyword argumentsddsthéls.core.setup() function.

Dependencies on other Python modules and packages can be specified by supplygqgitbekeyword argu-
ment tosetup() . The value must be a list of strings. Each string specifies a package that is required, and
optionally what versions are sufficient.

To specify that any version of a module or package is required, the string should consist entirely of the module or
package name. Examples includgymodule’ and’xml.parsers.expat’

If specific versions are required, a sequence of qualifiers can be supplied in parentheses. Each qualifier may consist
of a comparison operator and a version number. The accepted comparison operators are:

These can be combined by using multiple qualifiers separated by commas (and optional whitespace). In this case,
all of the qualifiers must be matched; a logical AND is used to combine the evaluations.

Let's look at a bunch of examples:

Requires Expression Explanation
==1.0 Only versionl.0 is compatible
>1.0, 1=1.5.1, <2.0 Any version afterl.0 and before2.0 is compatible, excert.5.1

Now that we can specify dependencies, we also need to be able to specify what we provide that other distributions
can require. This is done using thevideskeyword argument tsetup() . The value for this keyword is a list

of strings, each of which names a Python module or package, and optionally identifies the version. If the version
is not specified, it is assumed to match that of the distribution.

Some examples:

Provides Expression | Explanation
mypkg Providemypkg, using the distribution version
mypkg (1.1) Providemypkg version 1.1, regardless of the distribution version

A package can declare that it obsoletes other packages usingsbietekeyword argument. The value for this

is similar to that of theequireskeyword: a list of strings giving module or package specifiers. Each specifier
consists of a module or package name optionally followed by one or more version qualifiers. Version qualifiers
are given in parentheses after the module or package name.

The versions identified by the qualifiers are those that are obsoleted by the distribution being described. If no
qualifiers are given, all versions of the named module or package are understood to be obsoleted.

2.5 Installing Scripts

So far we have been dealing with pure and non-pure Python modules, which are usually not run by themselves but
imported by scripts.

Scripts are files containing Python source code, intended to be started from the command line. Scripts don’t
require Distutils to do anything very complicated. The only clever feature is that if the first line of the script starts
with #! and contains the word “python”, the Distutils will adjust the first line to refer to the current interpreter

12 Chapter 2. Writing the Setup Script

Distributing Python Modules, Release 2.6.2

location. By default, it is replaced with the current interpreter location. -Tdseecutable (or-e) option will
allow the interpreter path to be explicitly overridden.

Thescripts option simply is a list of files to be handled in this way. From the PyXML setup script:

setup(...,
scripts =[’ scripts/xmlproc_parse ", scripts/xmlproc_val "1

)

2.6 Installing Package Data

Often, additional files need to be installed into a package. These files are often data that’s closely related to the
package’s implementation, or text files containing documentation that might be of interest to programmers using
the package. These files are calfmtkage data

Package data can be added to packages usirmgpttiege _data keyword argument to theetup() function.

The value must be a mapping from package name to a list of relative path hames that should be copied into
the package. The paths are interpreted as relative to the directory containing the package (information from the
package dir mapping is used if appropriate); that is, the files are expected to be part of the package in the
source directories. They may contain glob patterns as well.

The path names may contain directory portions; any necessary directories will be created in the installation.

For example, if a package should contain a subdirectory with several data files, the files can be arranged like this
in the source tree:

setup.py
src/
mypkg/
__init__.py
module.py
data/
tables.dat
spoons.dat
forks.dat

The corresponding call teetup() might be:

setup(...,
packages =[' mypkg’],
package dir ={' mypkg’: ’src/mypkg '},
package data ={' mypkg': [' data/*.dat ']},
)

New in version 2.4.
2.7 Installing Additional Files
Thedata_files option can be used to specify additional files needed by the module distribution: configuration

files, message catalogs, data files, anything which doesn't fit in the previous categories.

data_files specifies a sequence dlifectory, files) pairs in the following way:

setup(...,
data_files =[(' bitmaps ', [' bm/bl.gif ', *bm/b2.gif '1J),
(" config ', [' cfg/data.cfg "D,
(’ /etc/init.d ", [7 init-script)]
)

2.6. Installing Package Data 13

Distributing Python Modules, Release 2.6.2

Note that you can specify the directory names where the data files will be installed, but you cannot rename the
data files themselves.

Each (irectory, files) pair in the sequence specifies the installation directory and the files to install there. If
directoryis a relative path, it is interpreted relative to the installation prefix (Pythsyssprefix for pure-
Python packagesys.exec_prefix for packages that contain extension modules). Each file naffilesis
interpreted relative to theetup.py script at the top of the package source distribution. No directory information
fromfilesis used to determine the final location of the installed file; only the name of the file is used.

You can specify thelata_files options as a simple sequence of files without specifying a target directory, but
this is not recommended, and timstall command will print a warning in this case. To install data files directly in
the target directory, an empty string should be given as the directory.

2.8 Additional meta-data

The setup script may include additional meta-data beyond the name and version. This information includes:

Meta-Data Description Value Notes
name name of the package short string D
version version of this release short string D(?2)
author package author's name short string 3)
author_email email address of the package author email address (3)
maintainer package maintainer’'s name short string 3)
maintainer_email email address of the package maintainer email address (3)
url home page for the package URL Q)
description short, summary description of the package | short string
long_description longer description of the package long string
download_url location where the package may be downloadddRL (4)
classifiers a list of classifiers list of strings | (4)
platforms a list of platforms list of strings

Notes:

1. These fields are required.

2. Itis recommended that versions take the famajor.minor[.patch[.sub]]

3. Either the author or the maintainer must be identified.

4. These fields should not be used if your package is to be compatible with Python versions prior to 2.2.3 or

2.3. The list is available from theyP| website

‘short string’ A single line of text, not more than 200 characters.
‘long string’ Multiple lines of plain text in reStructuredText format (s&é&://docutils.sf.ne)/

‘list of strings’ See below.

None of the string values may be Unicode.

Encoding the version information is an art in itself. Python packages generally adhere to the versiomfarmat
jor.minor[.patch][sub]. The major number is O for initial, experimental releases of software. It is incremented for
releases that represent major milestones in a package. The minor number is incremented when important new fea-
tures are added to the package. The patch number increments when bug-fix releases are made. Additional trailing
version information is sometimes used to indicate sub-releases. These are “al,a2,...,aN” (for alpha releases, where
functionality and API may change), “b1,b2,...,bN” (f